
Explanation in the Era of
LLMs
NAACL 2024 tutorial
Section 3: Data Attribution

1

Ana Marasović
University of Utah

Xi Ye
UT Austin

Prepared by Presented by

2

x

Model

y

input
highlights

free-text
explanations

So far…

[Interpreting Predictions of NLP Models EMNLP’20 Tutorial]

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020

3

x

Model

y

Training Process

Training Data

input
highlights

free-text
explanations

Data Influence

[Interpreting Predictions of NLP Models EMNLP’20 Tutorial]

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020

Data Influence: Explaining Model Predictions

4
[Interpreting Predictions of NLP
Models EMNLP’20 Tutorial]

Test
Example

Influential
Training

Examples

Polar Bear
✘

Beaver Pig

Polar Bear
✘

wrong label!

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020
https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020

Data Influence: Explaining LLMs’ Completions

5

[Grosse et al. (2023)]

https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

Tutorial @ EMNLP 2020: Interpreting Predictions of NLP Models

Website

Slides (125–151)

Recordings

6

Matt Gardner Sameer SinghEric Wallace

Our focus: scaling

● KFAC and EKFAC: methods used to find influences of 52B transformer language models
[Grosse et al. (2023)]

● PBRF: How to actually validate influences

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020
https://docs.google.com/presentation/d/1tC8rTWncxbKgqKllsl_t8-nV42xpb8A7-9w9n2KptbI/edit
https://www.youtube.com/watch?v=gprIzglUW1s
https://arxiv.org/abs/2308.03296

7
Slide credit: Pang Wei Koh

https://drive.google.com/file/d/1ZLY_9Wsk9MA0kXAoJDd6o1gbLvHhyPAn/view

Slide credit: Pang Wei Koh
8

Influence of a data point: how would the
prediction change if we did not have this training
point?

https://drive.google.com/file/d/1ZLY_9Wsk9MA0kXAoJDd6o1gbLvHhyPAn/view

9
Slide credit: Pang Wei Koh

Influence of a data point: how would the
prediction change if we did not have this training
point?

https://drive.google.com/file/d/1ZLY_9Wsk9MA0kXAoJDd6o1gbLvHhyPAn/view

10
Slide credit: Pang Wei Koh

https://drive.google.com/file/d/1ZLY_9Wsk9MA0kXAoJDd6o1gbLvHhyPAn/view

11
Slide credit: Pang Wei Koh

https://drive.google.com/file/d/1ZLY_9Wsk9MA0kXAoJDd6o1gbLvHhyPAn/view

Problem Repeatedly removing a training point and
retraining the model is too slow

Solution Approximation via influence functions
(a classical technique from the 1970s)
[Hampel, 1974; Cook, 1979]

12
Slide credit: Pang Wei Koh

https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.jstor.org/stable/2286747
https://drive.google.com/file/d/1ZLY_9Wsk9MA0kXAoJDd6o1gbLvHhyPAn/view

Seminal Work: Influence Functions [Koh and Liang, 2017]

13

For a test example , the influence of infinitesimally upweighting a training example
by on the value of a scalar-valued twice differentiable function is given by:

Optimal parameters on the
training dataset with

-upweighted

Optimal parameters on
the original training
dataset

Hessian Cost function Loss

Notice: On the right side, there is no The model is not re-trained with -upweighting
of

Upweighting vs. Removing: approximates the effect of removing

https://arxiv.org/abs/1703.04730

On which functions is the effect of removing an example studied?

14

Prior to LLMs, how the loss for a given test instance changes

is set to the loss function

On which functions is the effect of removing an example studied?

15

Prior to LLMs, how the loss for a given test instance changes

is set to the loss function

Today, how the likelihood of a given completion for a prompt

is set to

16

Seminal Work: Influence Functions [Koh and Liang, 2017] – Assumptions

1. The function is twice differentiable
2. exists
3. is unique

To satisfy 2 and 3, it is assumed that the cost function is strictly convex w.r.t. the
parameters, which is often not the case for neural networks

https://arxiv.org/abs/1703.04730

Challenges to Hessian Calculation

There are two main challenges to computing the inverse of the Hessian:

17

Challenges to Hessian Calculation

There are two main challenges to computing the inverse of the Hessian:

1. The Hessian of loss functions for neural networks can be nonpositive semidefinite
⇒ Inverse cannot be computed

a. Damping
b. Gauss-Newton Hessian

18

Challenges to Hessian Calculation

There are two main challenges to computing the inverse of the Hessian:

1. The Hessian of loss functions for neural networks can be nonpositive semidefinite
⇒ Inverse cannot be computed

a. Damping
b. Gauss-Newton Hessian

2. Hessian is square w.r.t. the model parameters
⇒ It is expensive to compute: The standard inversion algorithm has a time complexity of

a. Iterative methods
b. K-FAC & EK-FAC

19

21

A matrix is positive semidefinite if all of its eigenvalues are greater than or equal to zero

Adding to a matrix shifts its eigenvalues by

If a matrix has negative eigenvalues, by choosing large enough, all of eigenvalues of become
positive, making it positive definite and thus invertible

Koh and Liang (2017) set to 0.01 and Bae et al. (2022) to 0.001

Practical Improvements to Hessian Calculation
→ Damping

https://arxiv.org/abs/1703.04730
https://arxiv.org/abs/2209.05364

Practical Improvements to Hessian Calculation
→ Gauss-Newton Hessian

22

Gauss-Newton Hessian, , retains some second-order information, but unlike the Hessian, it is guaranteed
to be positive semi-definite for softmax output with cross-entropy loss, even when un-damped

Positive semi-definite does not imply the Hessian is invertible, so damping is still needed

Gauss-Newton Hessian “behaves” better than Hassian in practice

[Schraudolph et al., 2002]

https://nic.schraudolph.org/pubs/Schraudolph02.pdf

Challenges to Hessian Calculation

There are two main challenges to computing the inverse of the Hessian:

1. The Hessian of loss functions for neural networks can be nonpositive semidefinite
⇒ Inverse cannot be computed

a. Damping
b. Gauss-Newton Hessian

1. Hessian The Gauss-Newton Hessian (GNH) is square w.r.t. the model parameters
⇒ It is expensive to compute: The standard inversion algorithm has a time complexity of

a. Iterative methods
b. K-FAC & EK-FAC

26

This remains an issue because GNH is also
square w.r.t. the model parameters

Inverse-Hessian-Vector Product (IHVP)

27

Note: We want but we do not actually care about the exact values of

We can speedup the computations if we approximate the inverse-matrix-vector product without calculating
the inverse!

Well-studied in second-order optimization

Can be reused across test examples

28

Calculating IHVP Faster → Iterative Methods

Apply LiSSA (Linear time Stochastic Second-Order Algorithm) [Agarwal et al., 2017]

Typically
repeated R
rounds

The average of
the each round
is taken as the
final IHVP

https://arxiv.org/abs/1602.03943

29

Calculating IHVP Faster → Iterative Methods

Gradient for each
train example

LiSSAComplexity of influence with
explicitly computing IHVPs

[Koh and Liang (2017)]:

Setting T* R similar to N gives accurate results…

…but N for a pretraining dataset is massive

…and together with the large D LLMs have, this is still slow
🐌

https://arxiv.org/abs/1703.04730

Calculating IHVP Faster → K-FAC [Martens and Grosse, 2015]

We return to doing some matrix inversions explicitly, but to do so efficiently GNH is approximated as block
diagonal and each block is approximated with the Kronecker product of two smaller matrices

34Figures: Kazuki Osawa

GNH
Note: actually approximating fisher information matrix (FIM), but for transformer
LMs with softmax ouputs, FIM is equivalent to GNH

https://arxiv.org/abs/1503.05671
https://towardsdatascience.com/introducing-k-fac-and-its-application-for-large-scale-deep-learning-4e3f9b443414

Calculating IHVP Faster → K-FAC [Martens and Grosse, 2015]

We return to doing some matrix inversions explicitly, but to do so efficiently GNH is approximated as
block diagonal and each block is approximated with the Kronecker product of two smaller matrices

GHN (FIM) is block-diagonal under strong (not necessarily realistic) assumptions (one of the assumptions:
the pseudo-derivatives are uncorrelated in they belong in different layers).

35

https://arxiv.org/abs/1503.05671

Calculating IHVP Faster → K-FAC [Martens and Grosse, 2015]

We return to doing some matrix inversions explicitly, but to do so efficiently GNH is approximated as block
diagonal and each block is approximated with the Kronecker product of two smaller matrices

36

M = the input layer size (a few thousand)

P = the output layer size (a few thousand)

https://arxiv.org/abs/1503.05671

Calculating IHVP Faster → K-FAC → EK-FAC + Transformers

Grosse et al. (2023): scaling influence functions to LLMs with up to 52 billion parameters

● Extend EK-FAC (a more accurate extensions of KFAC [George et al., 2018]) to transformer LMs and a
damped version of the GNH

● influence only for the MLP parameters; attention and others ignored

● EK-FAC still has a notable memory overhead; additional block-diagonal approximations are done

● Gradients for all training sequences still have to be computed:

○ Finding influential examples over the entire pretraining corpus is as expensive as pretraining!

➔ TF-IDF filtering: Pretraining examples with low lexical overlap are filtered

➔ Query batching: Low-rank approximation of a batch of query gradients

https://github.com/pomonam/kronfluence

39

[Grosse et al. (2023)]

https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/1806.03884
https://github.com/pomonam/kronfluence
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

40

[Basu et al., 2020]

https://arxiv.org/abs/2006.14651

Why Is Validity of Influence Functions Questioned?

Influence functions are assumed to approximate
the leave-one-retraining (LOO) from scratch

42

[Bae et al., 2022]

https://arxiv.org/abs/2006.14651

Why Is Validity of Influence Functions Questioned?

Influence functions are assumed to approximate
the leave-one-retraining (LOO) from scratch

1. Train a network with all examples
2. Train a network without one example
3. Calculate the difference in the loss of the

two networks for test instances
4. Calculate influence scores for test

instances
5. Measure the correlation between 3 and 4

43

[Bae et al., 2022]

https://arxiv.org/abs/2006.14651

Why Is Validity of Influence Functions Questioned?

Influence functions are assumed to approximate
the leave-one-retraining (LOO) from scratch

1. Train a network with all examples
2. Train a network without one example
3. Calculate the difference in the loss of the

two networks for test instances
4. Calculate influence scores for test

instances
5. Measure the correlation between 3 and 4

If accurate, the correlation with the actual LOO
should be high (left figure)

44

[Bae et al., 2022]

https://arxiv.org/abs/2006.14651

Why Is Validity of Influence Functions Questioned?

Influence functions are assumed to approximate
the leave-one-retraining (LOO) from scratch

1. Train a network with all examples
2. Train a network without one example
3. Calculate the difference in the loss of the

two networks for test instances
4. Calculate influence scores for test

instances
5. Measure the correlation between 3 and 4

If accurate, the correlation with the actual LOO
should be high (left figure)

In practice, correlation may be low (right figure)

45

[Bae et al., 2022]

https://arxiv.org/abs/2006.14651

46

“...not necessarily “fragile”, but instead are giving accurate
answers to a different question than is normally assumed”

The calculations that lead to the influence equation start by:

1. Defining the optimal parameters for the cost function the original dataset
2. Defining the optimal parameters for the cost function when a training example is upweighted
3. Use the fact that the gradient of the cost function at its minimum is zero

– [Bae et al., 2022]

But with the new additions like damping and GNH, and considering the typical way neural networks
are trained, which cost function should our calculations start with in place of 1–2 and what should
we validate IFs against?

https://arxiv.org/abs/2006.14651

47

“...not necessarily “fragile”, but instead are giving accurate
answers to a different question than is normally assumed”

But with all the new additions like damping and GNH, and the fact that the parameters are usually not
converged, which cost function should our calculations start with and what should we validate IFs
against?

Find the parameters by training the network with the cost function in the last row, not the first row

This cost function approximates the effect of removing a data point while trying to keep the predictions
consistent with those of the (partially) trained model

– [Bae et al., 2022]

https://arxiv.org/abs/2006.14651

Use PBRF to Validate Influences!

Influence functions approximate PBRF

1. Train a network with all examples
2. Train a network with the PBRF objective
3. Calculate the difference in the loss of the

two networks for test instances
4. Calculate influence scores for test

instances
5. Measure the correlation between 3 and 4

48

[Bae et al.,
2022]

https://arxiv.org/abs/2006.14651
https://arxiv.org/abs/2006.14651

49

Some Observations from Patterns of Influences for LLMs

[Grosse et al. (2023)]

● the influential sequences for smaller
models tend to have short overlapping
sequences of tokens

● the top sequences for larger models are
related at a more abstract level

https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

50

Some Observations from Patterns of Influences for LLMs

[Grosse et al. (2023)]

Data influences of LLMs’ role playing
ability: role-playing behavior likely
results from imitation of examples in the
training set.

https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

Further Reading

Comparison of EKFAC and prior approaches to scaling

● Schioppa et al. (2021) Scaling Up Influence Functions
○ Transformer models with several hundreds of millions of parameters

● Guo et al. (2021) FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
○ 80x speedu of LiSSA

● Kwon et al. (2024) DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion

Models

New ideas to measuring influence are emerging:

● Isonuma and Titov (2024) Unlearning Reveals the Influential Training Data of Language Models

51

https://arxiv.org/abs/2112.03052
https://arxiv.org/abs/2012.15781
https://arxiv.org/abs/2310.00902
https://arxiv.org/abs/2310.00902
https://arxiv.org/abs/2401.15241

52

x

Model

y

Training Process

Training Data

input
highlights

free-text
explanations

Data Influence

[Interpreting Predictions of NLP Models EMNLP’20 Tutorial]

https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020

